Über ein weiteres Halogeno–Oxoindat $Ba_3In_2O_5Br_2$ mit $Sr_3Ti_2O_7$ -Struktur*

M. Abed und Hk. Müller-Buschbaum

Institut für Anorganische Chemie der Christian-Albrechts-Universität, Olshausenstr. 40–60, W–2300 Kiel (FRG)

(Eingegangen am 17. Juli 1991)

Abstract

Ba₃In₂O₅Br₂ was prepared by flux-aided solid state reaction and single crystals were investigated by X-ray techniques. It crystallizes with tetragonal symmetry (space group $D_{4h}^{1-}I4/mmm$; a=4.2546 Å; c=25.8552 Å; Z=2). Ba₃In₂O₅Br₂ has the same structure as Ba₃In₂O₅Cl₂ and is of the Sr₃Ti₂O₇ type. In Ba₃In₂O₅Br₂ the layers of double octahedra, typical of the Sr₃Ti₂O₇ structure, are bordered along the [001] direction by Br⁻ ions.

Zusammenfassung

Ba₃In₂O₅Br₂ wurde mit Schmelzmitteltechnik dargestellt und an Einkristallen mit Röntgenmethoden untersucht. Es kristallisiert tetragonal (Raumgruppe $D_{4h}^{+}-I4/mmm;$ a=4,2546 Å; c=25,8552 Å; Z=2). Ba₃In₂O₅Br₂ ist mit Ba₃In₂O₅Cl₂ isotyp und gehört zum Sr₃Ti₂O₇-Typ. Die Oktaederdoppelschichten des Sr₃Ti₂O₇-Typs werden in Ba₃In₂O₅Br₂ längs [001] durch Br⁻-Ionen besetzt.

1. Einleitung

In den letzten Jahren wurden Halogeno–Oxometallate der Zusammensetzung $A_3M_2O_5X_2$ mit $A=Sr^{2+}$ und $X=Cl^-$, $M=Fe^{3+}$ [1]; $M=Ga^{3+}$ [2]; $M=Al^{3+}$ [3] sowie $A=Ba^{2+}$ und $X=Cl^-$, $M=Fe^{3+}$ [4]; $M=In^{3+}$ [5]; $M=Fe^{3+}$ und $X=Br^-$ [4] dargestellt und die Kristallstrukturen bestimmt. Sr₃Fe₂O₅Cl₂ [1] und Ba₃In₂O₅Cl₂ [5] gehören zum Sr₃Ti₂O₇-Typ [6] mit partiellem Ersatz von O²⁻ gegen Cl⁻. Alle anderen Stoffe zeigen eine davon abweichende Kristallchemie mit einem neuen Strukturtyp. Eine Variante der Sr₃Ti₂O₇-Struktur ist der um eine Oktaederschicht erweiterte Sr₄Ti₃O₁₀-Typ. Auch hierzu wurde kürzlich ein isotypes Halogeno–Oxometallat Sr₈Co₆O₁₅Cl₄ [7] aufgefunden. Es fällt auf, daß es im Gegensatz zur K₂NiF₄-Struktur, zu der es ebenfalls Halogeno–Oxometallate gibt (Sr₂CuO₂X₂: X=Cl⁻ [8], X=Br⁻ [9]; Ca₂CuO₂X₂: X=Cl⁻, Br⁻ [10]), bei den höheren Homologen Sr₃M₂O₅X₂ und Sr₄M₃O_{7,5}X₂ bisher keine Verbindungen mit X=Br⁻ dargestellt wurden. Soeben gelang die Synthese von Ba₃In₂O₅Br₂-Einkristallen, so daß hier über das erste Bromo–Oxometallat des Sr₃Ti₂O₇-Typs berichtet werden kann.

^{*}Herrn Professor W. Bronger und Herrn Professor Ch. J. Raub zu ihren 60. Geburtstagen gewidmet.

2. Darstellung und röntgenographische Untersuchung von Ba₃In₂O₅Br₂-Einkristallen

Halogeno–Oxometallate werden in der Regel mit einer Schmelzmitteltechnik dargestellt. Das Schmelzmittel ist zugleich die halogenhaltige Komponente des Reaktionsansatzes. Einkristalle von Ba₃In₂O₅Br₂ entstehen aus BaCO₃:In₂O₃:BaBr₂·2H₂O=2:1:20 beim Erhitzen an Luft auf 850–900 °C innerhalb von zwei Wochen. Die gelben würfelförmigen Kristalle wurden mit energiedispersiver Röntgenspektrometrie (Elektronenmikroskop Leitz SR 50, EDX-System Link AN 10 000) analytisch untersucht. Mit halbquantitativer standardfreier Meßtechnik wurde das Verhältnis Ba:In:Br wie 3:2:2 bestimmt.

Weissenbergaufnahmen und Vierkreisdiffraktometermessungen führten zu den kristallographischen Daten. Diese sind mit den Meßbedingungen in Tabelle 1 zusammengestellt. Mit dem Programm SHELX-76 [11] wurden die Atomparameter verfeinert. Die endgültigen Werte sind in Tabelle 2 aufgelistet. Tabelle 3 gibt die wichtigsten interatomaren Abstände wieder.

TABELLE 1

Kristallographische Daten und Meßbedingungen für Ba3In2O5Br2ª

Gitterkonstanten (Å)	a=b=4,2546(8) c=25,8552(56)			
Zellvolumen (Å ³)	468,03			
Auslöschungen	hkl: h+k+l=2n hk0: h+k=2n 0kl: k+l=2n 00l: l=2n 0kl: k=2n			
Raumgruppe	$D_{4k}^{17} - I4/mmm$			
Zahl der Formeleinh. pro EZ	2			
Diffraktometer	4-Kreis, Siemens AED 2			
Strahlung/Monochromator	Mo K α /Graphit, eben			
2θ-Bereich	5<2 0 <70			
Schrittweite (Grad 2θ) Korrekturen	0,03 Untergrund, Polarisations- u. Lorentzfaktor, empirische Absorptionskorrektur			
Anzahl d. Reflexe	271 $(F_0 > 3\sigma(F_0))$			
Güterfaktor	R = 0,082 $R_w = 0,072$ $R = \sum F_0 - F_c / \sum F_0 $ $R_w = \sum (F_0 - F_c) w^{1/2} / \sum w^{1/2} F_0 $ $w = 1,6105 / \sigma^2 (F_0)$			

*Standardabweichungen in Klammern.

TABELLE 2

	Lage	x	y	<i>z</i>	$B(Å^2)$
Ba(1)	(2b)	0,0	0,0	0,5	1,18(8)
Ba(2)	(4e)	0,0	0,0	0,3448(1)	0,71(8)
In	(4e)	0,0	0,0	0,0794(2)	0,47(8)
Br	(4e)	0,0	0,0	0,2048(3)	1,34(8)
0(1)	(8g)	0,0	0,5	0,0896(11)	1,3(5)
O(2)	(2a)	0,0	0,0	0,0	1.7(1.0)

Atomparameter^{*} für Ba₃In₂O₅Br₂: in der Raumgruppe D_{4h}^{17} -I4/mmm sind folgende Punktlagen besetzt

*Standardabweichungen in Klammern.

TABELLE 3

Interatomare Abstände^{*} (Å) für Ba₃In₂O₅Br₂

Ba(1)O(2)	3,0085(4)	(4×)	In-O(2)	2,053(5)	(1×)
Ba(1)-O(1)	3,145(21)	(8×)	In-O(1)	2,144(4)	(4×)
			In–Br	3,242(9)	(1×)
Ba(2)O(1)	2,721(18)	(4×)			
Ba(2)–Br	3,270(3)	(4×)			
Ba(2)–Br	3,620(8)	(1×)			
804 1 - 1 - 1 - 1 - 1					

*Standardabweichungen in Klammern.

Alle Rechnungen wurden auf der elektronischen Rechenanlage CRVAX 8550 der Universität Kiel durchgeführt und die Zeichnungen mit einem modifizierten ORTEP-Program [12, 13] erstellt.

3. Beschreibung der Kristallstruktur mit Diskussion

Die Röntgenstrukturanalyse zeigt, daß $Ba_3In_2O_5Br_2$ mit $Ba_3In_2O_5Cl_2$ [5] isotyp ist und somit auch als Variante des $Sr_3Ti_2O_7$ -Typs angesehen werden kann. Abbildung 1 gibt den Aufbau von $Ba_3In_2O_5Br_2$ wieder. Durch Schraffur sind die für den $Sr_3Ti_2O_7$ -Typ charakteristischen Oktaederdoppelschichten hervorgehoben. Diese sind hier durch In^{3+} -Ionen besetzt. Beim formalen Ersatz von Ti^{4+} gegen In^{3+} wird das Ladungsdefizit auf der Seite der Metallionen durch Verlust von einem O^{2-} kompensiert. Es entstehen die Oxoindate $Ba_3In_2O_6$ [14], $Ba_2SrIn_2O_6$ [15] bzw. $BaSr_2InO_6$ [16], die sich durch Doppelschichten tetragonaler Pyramiden um In^{3+} anstelle der Oktaederdoppelschichten auszeichnen. Zur Rekonstruktion des kompletten $Sr_3Ti_2O_7$ -Gitters wird anstelle des abgespaltenen O^{2-} -Ions ein Halogenion (hier Br^-) in die Kristallstruktur eingelagert und zur Wahrung der Elektroneutralität ein weiterer Austausch von O^{2-} gegen Br^- vorgenommen. Wie Abb. 1 zeigt, werden nur die längs [001] orientierten peripheren O^{2-} -Ionen der Oktaederdoppelschichten gegen Br^- -Ionen ersetzt. Die für $Sr_3Ti_2O_7$ charakteristische

Abb. 1. Perspektivische Darstellung der Atom- und Polyederanordnung in $Ba_3In_2O_5Br_2$: die Oktaeder um In^{3+} sind schraffiert hervorgehoben; Kugel mit Kreuz, Ba^{2+} ; Kugel mit Segment, Br^- und offene Kugel, O^{2-} .

 ${}_{\infty}^{2}$ (Ti₂O₇)⁶-Oktaederdoppelschicht wird durch eine ${}_{\infty}^{2}$ (In₂O₅Br₂)-Schicht, mit geordneter Verteilung der Anionen ersetzt. Diese Anordnung von O²⁻ und Br⁻ führt für Ba²⁺ zu unterschiedlichen Koordinationspolyedern. Ba(1) ist in die Lücken der perowskitähnlichen Oktaederdoppelschicht eingelagert und erhält so eine kuboktaedrische Sauerstoffumgebung (Abb. 2(a)). Ba(2) ist im Bereich der Br⁻-Ionen angeordnet und zeigt eine Koordination eines

quadratischen Antiprismas aus O^{2-} und Br⁻-Ionen. Die große quadratische Fläche wird durch ein fernes Br⁻-Ion bekappt (Abb. 2(b)). In diesem Punkt unterscheiden sich die Halogeno-Oxoindate vom Bezugstyp Sr₃Ti₂O₇, bzw. der eng verwandten K₂NiF₄-Struktur. In den halogenfreien Oxiden ist das Erdalkalimetallion auf gleicher kristallographischer Position ebenfalls (8 + 1)-fach koordiniert, allerdings ist dann der die große quadratische Antiprismenfläche überkappende O²⁻-Nachbar der kürzeste Koordinationspartner. Bemerkenswert ist, daß Verbindungen vom K₂NiF₄-bzw. Sr₃Ti₂O₇-Typ trotz dieses relativ kurzen Abstandes längs [001] gestreckte Oktaeder um die Ionen zeigen, die auf den Ni²⁺- bzw. Ti⁴⁺-Plätzen angeordnet sind [17].

In $Ba_3In_2O_5Br_2$ weist In^{3+} ebenfalls ein deformiertes InO_5Br -Oktaeder auf. Der Abstand In-Br ist mit 3,24 Å wesentlich länger als die Radiensumme. Erstaunlich ist in diesem Zusammenhang, daß In^{3+} nicht die Oktaedergrundfläche zentriert (vgl. Abb. 2(c)), sondern in Richtung auf O(2) verschoben ist. Es entsteht so unter Bezug auf das In^{3+} -Ion der Eindruck eines längs [001] einseitig gestauchten und gestreckten Oktaeders. Über diesen Effekt wurde bereits an der isotypen Substanz $Ba_3In_2O_5Cl_2$ [5] berichtet.

Dank

Der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie danken wir für die Unterstützung mit wertvollen Sachmitteln.

Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlichtechnische Zusammenarbeit mbH., W-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-55431., des Autors und Zeitschriftenzitats angefordert werden.

Literatur

- 1 W. Leib und Hk. Müller-Buschbaum, Z. anorg. allg. Chem., 518 (1984) 115.
- 2 W. Leib und Hk. Müller-Buschbaum, Monatsh. Chem., 119 (1988) 157.
- 3 W. Leib und Hk. Müller-Buschbaum, Rev. Chim. Miner., 23 (1986) 760.
- 4 W. Leib und Hk. Müller-Buschbaum, Z. anorg. allg. Chem., 521 (1985) 51.
- 5 W. Gutau und Hk. Müller-Buschbaum, Z. anorg. allg. Chem., 584 (1990) 125.
- 6 S. N. Ruddlesden und P. Popper, Acta Crtystallogr., 11 (1958) 54.
- 7 Hk. Müller-Buschbaum und J. Boje, Z. anorg. allg. Chem., 592 (1991) 73.
- 8 B. Grande und Hk. Müller-Buschbaum, Z. anorg. allg. Chem., 417 (1978) 68.
- 9 B. Grande und Hk. Müller-Buschbaum, Z. anorg. allg. Chem., 433 (1977) 152.
- 10 B. Grande und Hk. Müller-Buschbaum, Z. anorg. allg. Chem., 429 (1977) 88.
- 11 G. M. Sheldrick, SHELX-76, Program for Crystal Structure Determination, Version 1.1.1976, Cambridge.
- 12 C. K. Johnson, Rep. ORNL-3794, 1965 (Oak Ridge National Laboratory, TN).
- 13 K.-B. Plötz, Dissertation, Kiel, 1982.
- 14 K. Mader und Hk. Müller-Buschbaum, Z. anorg. allg. Chem., 559 (1988) 89.
- 15 A. Lalla und Hk. Müller-Buschbaum, Z. anorg. allg. Chem., 588 (1990) 117.
- 16 A. Lalla und Hk. Müller-Buschbaum, Rev. Chim. Miner., 24 (1987) 605.
- 17 Hk. Müller-Buschbaum, Angew. Chem., 101 (1989) 1503; Angew. Chem., Int. Ed. Engl., 28 (1989) 1472.