Über ein weiteres Halogeno-Oxoindat Ba₃In₂O₅Br₂ mit Sr₃Ti₂O₇-Struktur*

M. Abed und Hk. Müller-Buschbaum

Institut für Anorganische Chemie der Christian-Albrechts-Universität, Olshausenstr. 40–60, W–2300 Kiel (FRG)

(Eingegangen am 17. Juli 1991)

Abstract

 ${\rm Ba_3In_2O_5Br_2}$ was prepared by flux-aided solid state reaction and single crystals were investigated by X-ray techniques. It crystallizes with tetragonal symmetry (space group $D_{\rm 4h}^{17}I4/mmm$; a=4.2546 Å; c=25.8552 Å; Z=2). ${\rm Ba_3In_2O_5Br_2}$ has the same structure as ${\rm Ba_3In_2O_5Cl_2}$ and is of the ${\rm Sr_3Ti_2O_7}$ type. In ${\rm Ba_3In_2O_5Br_2}$ the layers of double octahedra, typical of the ${\rm Sr_3Ti_2O_7}$ structure, are bordered along the [001] direction by ${\rm Br^-}$ ions.

Zusammenfassung

 ${\rm Ba_3In_2O_5Br_2}$ wurde mit Schmelzmitteltechnik dargestellt und an Einkristallen mit Röntgenmethoden untersucht. Es kristallisiert tetragonal (Raumgruppe $D_{\rm hh}^{17}$ –I4/mmm; a=4,2546 Å; c=25,8552 Å; Z=2). ${\rm Ba_3In_2O_5Br_2}$ ist mit ${\rm Ba_3In_2O_5Cl_2}$ isotyp und gehört zum ${\rm Sr_3Ti_2O_7}$ -Typ. Die Oktaederdoppelschichten des ${\rm Sr_3Ti_2O_7}$ -Typs werden in ${\rm Ba_3In_2O_5Br_2}$ längs [001] durch ${\rm Br}^-$ -Ionen besetzt.

1. Einleitung

In den letzten Jahren wurden Halogeno–Oxometallate der Zusammensetzung $A_3M_2O_5X_2$ mit $A=Sr^2+$ und $X=Cl^-$, $M=Fe^3+$ [1]; $M=Ga^3+$ [2]; $M=Al^3+$ [3] sowie $A=Ba^2+$ und $X=Cl^-$, $M=Fe^3+$ [4]; $M=In^3+$ [5]; $M=Fe^3+$ und $X=Br^-$ [4] dargestellt und die Kristallstrukturen bestimmt. $Sr_3Fe_2O_5Cl_2$ [1] und $Ba_3In_2O_5Cl_2$ [5] gehören zum $Sr_3Ti_2O_7$ -Typ [6] mit partiellem Ersatz von O^2- gegen Cl^- . Alle anderen Stoffe zeigen eine davon abweichende Kristallchemie mit einem neuen Strukturtyp. Eine Variante der $Sr_3Ti_2O_7$ -Struktur ist der um eine Oktaederschicht erweiterte $Sr_4Ti_3O_{10}$ -Typ. Auch hierzu wurde kürzlich ein isotypes Halogeno–Oxometallat $Sr_8Co_6O_{15}Cl_4$ [7] aufgefunden. Es fällt auf, daß es im Gegensatz zur K_2NiF_4 -Struktur, zu der es ebenfalls Halogeno–Oxometallate gibt ($Sr_2CuO_2X_2$: $X=Cl^-$ [8], $X=Br^-$ [9]; $Ca_2CuO_2X_2$: $X=Cl^-$, Br^- [10]), bei den höheren Homologen $Sr_3M_2O_5X_2$ und $Sr_4M_3O_{7,5}X_2$ bisher keine Verbindungen mit $X=Br^-$ dargestellt wurden. Soeben gelang die Synthese von $Ba_3In_2O_5Br_2$ -Einkristallen, so daß hier über das erste Bromo–Oxometallat des $Sr_3Ti_2O_7$ -Typs berichtet werden kann.

^{*}Herrn Professor W. Bronger und Herrn Professor Ch. J. Raub zu ihren 60. Geburtstagen gewidmet.

2. Darstellung und röntgenographische Untersuchung von $Ba_3In_2O_5Br_2$ -Einkristallen

Halogeno–Oxometallate werden in der Regel mit einer Schmelzmitteltechnik dargestellt. Das Schmelzmittel ist zugleich die halogenhaltige Komponente des Reaktionsansatzes. Einkristalle von $\rm Ba_3In_2O_5Br_2$ entstehen aus $\rm BaCO_3:In_2O_3:BaBr_2\cdot 2H_2O=2:1:20$ beim Erhitzen an Luft auf 850–900 °C innerhalb von zwei Wochen. Die gelben würfelförmigen Kristalle wurden mit energiedispersiver Röntgenspektrometrie (Elektronenmikroskop Leitz SR 50, EDX-System Link AN 10 000) analytisch untersucht. Mit halbquantitativer standardfreier Meßtechnik wurde das Verhältnis Ba:In:Br wie 3:2:2 bestimmt.

Weissenbergaufnahmen und Vierkreisdiffraktometermessungen führten zu den kristallographischen Daten. Diese sind mit den Meßbedingungen in Tabelle 1 zusammengestellt. Mit dem Programm SHELX-76 [11] wurden die Atomparameter verfeinert. Die endgültigen Werte sind in Tabelle 2 aufgelistet. Tabelle 3 gibt die wichtigsten interatomaren Abstände wieder.

TABELLE 1 Kristallographische Daten und Meßbedingungen für $Ba_3In_2O_5Br_2^a$

Gitterkonstanten (Å)	a=b=4,2546(8) c=25,8552(56)			
Zellvolumen (ų)	468,03			
Auslöschungen	hkl: h+k+l=2n hk0: h+k=2n 0kl: k+l=2n 00l: l=2n 0kl: k=2n			
Raumgruppe	D_{4k}^{17} – $I4/mmm$			
Zahl der Formeleinh. pro EZ	2			
Diffraktometer	4-Kreis, Siemens AED 2			
Strahlung/Monochromator	Mo K α /Graphit, eben			
2θ-Bereich	$5 < 2\theta < 70$			
Schrittweite (Grad 2θ) Korrekturen	0,03 Untergrund, Polarisations- u. Lorentzfaktor, empirische Absorptionskorrektur			
Anzahl d. Reflexe	$271 \ (F_0 > 3\sigma(F_0))$			
Güterfaktor	$R = 0,082$ $R_w = 0,072$ $R = \sum F_0 - F_c / \sum F_0 $ $R_w = \sum (F_0 - F_c) w^{1/2} / \sum w^{1/2} F_0 $ $w = 1,6105 / \sigma^2(F_0)$			

^aStandardabweichungen in Klammern.

TABELLE 2 Atomparameter* für ${\rm Ba_3In_2O_5Br_2}$: in der Raumgruppe D_{4h}^{17} –I4/mmm sind folgende Punktlagen besetzt

	Lage	\boldsymbol{x}	\boldsymbol{y}	z	$B({ m \AA}^2)$
Ba(1)	(2b)	0,0	0,0	0,5	1,18(8)
Ba(2)	(4e)	0,0	0,0	0,3448(1)	0,71(8)
In	(4e)	0,0	0,0	0,0794(2)	0,47(8)
Br	(4e)	0,0	0,0	0,2048(3)	1,34(8)
0(1)	(8g)	0,0	0,5	0,0896(11)	1,3(5)
0(2)	(2a)	0,0	0,0	0,0	1,7(1,0)

^{*}Standardabweichungen in Klammern.

TABELLE 3
Interatomare Abstände* (Å) für Ba₃In₂O₅Br₂

Ba(1)-O(2)	3,0085(4)	(4×)	In-O(2)	2,053(5)	(1×)
Ba(1)=O(1)	3,145(21)	(8×)	In-O(1)	2,144(4)	(4X)
	, , ,		In–Br	3,242(9)	(1×)
Ba(2)-O(1)	2,721(18)	(4×)			
Ba(2)-Br	3,270(3)	(4×)			
Ba(2)-Br	3,620(8)	(1×)			

^{*}Standardabweichungen in Klammern.

Alle Rechnungen wurden auf der elektronischen Rechenanlage CRVAX 8550 der Universität Kiel durchgeführt und die Zeichnungen mit einem modifizierten ORTEP-Program [12, 13] erstellt.

3. Beschreibung der Kristallstruktur mit Diskussion

Die Röntgenstrukturanalyse zeigt, daß Ba₃In₂O₅Br₂ mit Ba₃In₂O₆Cl₂ [5] isotyp ist und somit auch als Variante des Sr₃Ti₂O₇-Typs angesehen werden kann. Abbildung 1 gibt den Aufbau von Ba₃In₂O₅Br₂ wieder. Durch Schraffur sind die für den Sr₃Ti₂O₇-Typ charakteristischen Oktaederdoppelschichten hervorgehoben. Diese sind hier durch In³⁺-Ionen besetzt. Beim formalen Ersatz von Ti⁴⁺ gegen In³⁺ wird das Ladungsdefizit auf der Seite der Metallionen durch Verlust von einem O²⁻ kompensiert. Es entstehen die Oxoindate Ba₃In₂O₆ [14], Ba₂SrIn₂O₆ [15] bzw. BaSr₂InO₆ [16], die sich durch Doppelschichten tetragonaler Pyramiden um In³⁺ anstelle der Oktaederdoppelschichten auszeichnen. Zur Rekonstruktion des kompletten Sr₃Ti₂O₇-Gitters wird anstelle des abgespaltenen O²⁻-Ions ein Halogenion (hier Br⁻) in die Kristallstruktur eingelagert und zur Wahrung der Elektroneutralität ein weiterer Austausch von O²⁻ gegen Br⁻ vorgenommen. Wie Abb. 1 zeigt, werden nur die längs [001] orientierten peripheren O²⁻-Ionen der Oktaederdoppelschichten gegen Br⁻-Ionen ersetzt. Die für Sr₃Ti₂O₇ charakteristische

Abb. 1. Perspektivische Darstellung der Atom- und Polyederanordnung in $Ba_3In_2O_5Br_2$: die Oktaeder um In^{3+} sind schraffiert hervorgehoben; Kugel mit Kreuz, Ba^{2+} ; Kugel mit Segment, Br^- und offene Kugel, O^{2-} .

 $^2_{\infty}(\text{Ti}_2\text{O}_7)^6$ --Oktaederdoppelschicht wird durch eine $^2_{\infty}(\text{In}_2\text{O}_5\text{Br}_2)$ -Schicht, mit geordneter Verteilung der Anionen ersetzt. Diese Anordnung von O^{2-} und Br^- führt für Ba^{2+} zu unterschiedlichen Koordinationspolyedern. Ba(1) ist in die Lücken der perowskitähnlichen Oktaederdoppelschicht eingelagert und erhält so eine kuboktaedrische Sauerstoffumgebung (Abb. 2(a)). Ba(2) ist im Bereich der Br^- -Ionen angeordnet und zeigt eine Koordination eines

Abb. 2. Koordinationspolyeder der Metallionen in Ba₃In₂O₅Br₂: (a) Polyeder um Ba(1); (b) Polyeder um Ba(2); (c) Polyeder um Indium; Symbole wie in Abb. 1.

quadratischen Antiprismas aus O^{2-} - und Br $^-$ -Ionen. Die große quadratische Fläche wird durch ein fernes Br $^-$ -Ion bekappt (Abb. 2(b)). In diesem Punkt unterscheiden sich die Halogeno-Oxoindate vom Bezugstyp $Sr_3Ti_2O_7$, bzw. der eng verwandten K_2NiF_4 -Struktur. In den halogenfreien Oxiden ist das Erdalkalimetallion auf gleicher kristallographischer Position ebenfalls (8+1)-fach koordiniert, allerdings ist dann der die große quadratische Antiprismenfläche überkappende O^{2-} -Nachbar der kürzeste Koordinationspartner. Bemerkenswert ist, daß Verbindungen vom K_2NiF_4 -bzw. $Sr_3Ti_2O_7$ -Typ trotz dieses relativ kurzen Abstandes längs [001] gestreckte Oktaeder um die Ionen zeigen, die auf den Ni^{2+} - bzw. Ti^{4+} -Plätzen angeordnet sind [17].

In $Ba_3In_2O_5Br_2$ weist In^{3+} ebenfalls ein deformiertes InO_5Br -Oktaeder auf. Der Abstand In-Br ist mit 3,24 Å wesentlich länger als die Radiensumme. Erstaunlich ist in diesem Zusammenhang, daß In^{3+} nicht die Oktaedergrundfläche zentriert (vgl. Abb. 2(c)), sondern in Richtung auf O(2) verschoben ist. Es entsteht so unter Bezug auf das In^{3+} -Ion der Eindruck eines längs [001] einseitig gestauchten und gestreckten Oktaeders. Über diesen Effekt wurde bereits an der isotypen Substanz $Ba_3In_2O_5Cl_2$ [5] berichtet.

Dank

Der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie danken wir für die Unterstützung mit wertvollen Sachmitteln.

Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlichtechnische Zusammenarbeit mbH., W-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-55431., des Autors und Zeitschriftenzitats angefordert werden.

Literatur

- 1 W. Leib und Hk. Müller-Buschbaum, Z. anorg. allg. Chem., 518 (1984) 115.
- 2 W. Leib und Hk. Müller-Buschbaum, Monatsh. Chem., 119 (1988) 157.
- 3 W. Leib und Hk. Müller-Buschbaum, Rev. Chim. Miner., 23 (1986) 760.
- 4 W. Leib und Hk. Müller-Buschbaum, Z. anorg. allg. Chem., 521 (1985) 51.
- 5 W. Gutau und Hk. Müller-Buschbaum, Z. anorg. allg. Chem., 584 (1990) 125.
- 6 S. N. Ruddlesden und P. Popper, Acta Crtystallogr., 11 (1958) 54.
- 7 Hk. Müller-Buschbaum und J. Boje, Z. anorg. allg. Chem., 592 (1991) 73.
- 8 B. Grande und Hk. Müller-Buschbaum, Z. anorg. allg. Chem., 417 (1978) 68.
- 9 B. Grande und Hk. Müller-Buschbaum, Z. anorg. allg. Chem., 433 (1977) 152.
- 10 B. Grande und Hk. Müller-Buschbaum, Z. anorg. allg. Chem., 429 (1977) 88.
- 11 G. M. Sheldrick, SHELX-76, Program for Crystal Structure Determination, Version 1.1.1976, Cambridge.
- 12 C. K. Johnson, Rep. ORNL-3794, 1965 (Oak Ridge National Laboratory, TN).
- 13 K.-B. Plötz, Dissertation, Kiel, 1982.
- 14 K. Mader und Hk. Müller-Buschbaum, Z. anorg. allg. Chem., 559 (1988) 89.
- 15 A. Lalla und Hk. Müller-Buschbaum, Z. anorg. allg. Chem., 588 (1990) 117.
- 16 A. Lalla und Hk. Müller-Buschbaum, Rev. Chim. Miner., 24 (1987) 605.
- 17 Hk. Müller-Buschbaum, Angew. Chem., 101 (1989) 1503; Angew. Chem., Int. Ed. Engl., 28 (1989) 1472.